Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

A characterization of isochronous centres in terms of symmetries.

Emilio FreireGasull, Armengol, Guillamon, Antoni 2 — 2004

Revista Matemática Iberoamericana

We present a description of isochronous centres of planar vector fields X by means of their groups of symmetries. More precisely, given a normalizer U of X (i.e., [X,U]= µ X, where µ is a scalar function), we provide a necessary and sufficient isochronicity condition based on µ. This criterion extends the result of Sabatini and Villarini that establishes the equivalence between isochronicity and the existence of commutators ([X,U]= 0). We put also special emphasis on the mechanical aspects of isochronicity;...

Simple examples of one-parameter planar bifurcations.

Armengol GasullRafel Prohens — 2000

Extracta Mathematicae

In this paper we give simple and low degree examples of one-parameter polynomial families of planar differential equations which present generic, codimension one, isolated, compact bifurcations. In contrast with some examples which appear in the usual text books each bifurcation occurs when the bifurcation parameter is zero. We study the total number of limit cycles that the examples present and we also make their phase portraits on the Poincaré sphere.

Quadratic systems with a unique finite rest point.

Bartomeu CollArmengol GasullJaume Llibre — 1988

Publicacions Matemàtiques

We study phase portraits of quadratic systems with a unique finite singularity. We prove that there are 111 different phase portraits without limit cycles and that 13 of them are realizable with exactly one limit cycle. In order to finish completely our study two problems remain open: the realization of one topologically possible phase portrait, and to determine the exact number of limit cycles for a subclass of these systems.

A polynomial class of Markus-Yamabe counterexamples.

Anna CimaArmengol GasullFrancesc Mañosas — 1997

Publicacions Matemàtiques

In the paper [CEGHM] a polynomial counterexample to the Markus-Yamabe Conjecture and to the discrete Markus-Yamabe Question in dimension n ≥ 3 are given. In the present paper we explain a way for obtaining a family of polynomial counterexamples containing the above ones. Finally we study the global dynamics of the examples given in [CEGHM].

A note on LaSalle's problems

Anna CimaArmengol GasullFrancesc Mañosas — 2001

Annales Polonici Mathematici

In LaSalle's book "The Stability of Dynamical Systems", the author gives four conditions which imply that the origin of a discrete dynamical system defined on ℝ is a global attractor, and proposes to study the natural extensions of these conditions in ℝⁿ. Although some partial results are obtained in previous papers, as far as we know, the problem is not completely settled. In this work we first study the four conditions and prove that just one of them implies that the origin is a global attractor...

Limit cycles in the Holling-Tanner model.

Armengol GasullRobert E. KooljJoan Torregrosa — 1997

Publicacions Matemàtiques

This paper deals with the following question: does the asymptotic stability of the positive equilibrium of the Holling-Tanner model imply it is also globally stable? We will show that the answer to this question is negative. The main tool we use is the computation of Poincaré-Lyapunov constants in case a weak focus occurs. In this way we are able to construct an example with two limit cycles.

Page 1

Download Results (CSV)