The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Turan’s problem asks what is the maximal distance from a
polynomial to the set of all irreducible polynomials over Z.
It turns out it is sufficient to consider the problem in the setting of F2.
Even though it is conjectured that there exists an absolute constant C such that
the distance L(f - g) <= C, the problem remains open. Thus it attracts different
approaches, one of which belongs to Lee, Ruskey and Williams, who study
what the probability is for a set of polynomials ‘resembling’ the irreducibles
to...
Download Results (CSV)