A counterexample to the Drury permanent conjecture
We offer a counterexample to a conjecture concerning the permanent of positive semidefinite matrices. The counterexample is a 4 × 4 complex correlation matrix.
We offer a counterexample to a conjecture concerning the permanent of positive semidefinite matrices. The counterexample is a 4 × 4 complex correlation matrix.
We disprove a conjecture made by Rajesh Pereira and Joanna Boneng regarding the upper bound on the number of doubly quasi-stochastic scalings of an n × n positive definite matrix. In doing so, we arrive at the true upper bound for 3 × 3 real matrices, and demonstrate that there is no such bound when n ≥ 4.
Page 1