Linear stability results in a magnetothermoconvection problem.
For normal mode perturbations, in the hypothesis that the principle of exchange of stabilities holds, the eigenvalue problem defining the neutral curves of the linear stability for a magnetic electroanisotropic Benard problem is solved by Budiansky-DiPrima method. The unknown functions are taken as Fourier series on some total sets of separable Hilbert spaces and the expansion functions satisfied only part of the boundary conditions of the problem. This introduces some constraints to be satisfied...
Page 1