The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Lower bound and upper bound of operators on block weighted sequence spaces

Rahmatollah LashkaripourGholomraza Talebi — 2012

Czechoslovak Mathematical Journal

Let A = ( a n , k ) n , k 1 be a non-negative matrix. Denote by L v , p , q , F ( A ) the supremum of those L that satisfy the inequality A x v , q , F L x v , p , F , where x 0 and x l p ( v , F ) and also v = ( v n ) n = 1 is an increasing, non-negative sequence of real numbers. If p = q , we use L v , p , F ( A ) instead of L v , p , p , F ( A ) . In this paper we obtain a Hardy type formula for L v , p , q , F ( H μ ) , where H μ is a Hausdorff matrix and 0 < q p 1 . Another purpose of this paper is to establish a lower bound for A W N M v , p , F , where A W N M is the Nörlund matrix associated with the sequence W = { w n } n = 1 and 1 < p < . Our results generalize some works of Bennett, Jameson and present authors....

Page 1

Download Results (CSV)