Banach Spaces of Compact Multipliers and Their Dual Spaces.
This paper considers the Lipschitz subalgebras of a homogeneous algebra on the circle. Interpolation space theory is used to derive estimates for the multiplier norm on closed primary ideals in , . From these estimates the Ditkin and Analytic Ditkin conditions for follow easily. Thus the well-known theory of (regular) Banach algebras satisfying the Ditkin condition applies to as does the theory developed in part I of this series which requires the Analytic Ditkin condition. Examples...
Let be a homogeneous algebra on the circle and the closed subalgebra of of functions having analytic extensions into the unit disk . This paper considers the structure of closed ideals of under suitable restrictions on the synthesis properties of . In particular, completely characterized are the closed ideals in whose zero sets meet the circle in a countable set of points. These results contain some previous results of Kahane and Taylor-Williams obtained independently.
Page 1