Multiple solutions to a perturbed Neumann problem
We consider the perturbed Neumann problem ⎧ -Δu + α(x)u = α(x)f(u) + λg(x,u) a.e. in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where Ω is an open bounded set in with boundary of class C², with , f: ℝ → ℝ is a continuous function and g: Ω × ℝ → ℝ, besides being a Carathéodory function, is such that, for some p > N, and for all t ∈ ℝ. In this setting, supposing only that the set of global minima of the function has M ≥ 2 bounded connected components, we prove that, for all λ ∈ ℝ small enough, the above...