In this work, depending on the relation between the Deborah, the Reynolds and the aspect ratio numbers, we formally derived shallow-water type systems starting from a micro-macro description for non-Newtonian fluids in a thin domain governed by an elastic dumbbell type model with a slip boundary condition at the bottom. The result has been announced by the authors in [G. Narbona-Reina, D. Bresch, Springer Verlag (2010)] and in the present paper, we provide a self-contained description, complete...
The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different HLLC solvers. Some results concerning the non-negativity...
The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type
approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a
turbidity current model. The main difficulties come from the nonconservative nature of the
system. A general strategy to derive simple approximate Riemann solvers for
nonconservative systems is introduced, which is applied to the turbidity current model to
obtain two different...
Download Results (CSV)