Dual results of factorization for operators.
Tauberian operators, which appeared in response to a problem in summability [GaW, KW] have found application in several situations: factorization of operators [DFJP], preservation of isomorphic properties of Banach spaces [N, NR], equivalence between the Radon-Nikodym property and the Krein-Milman property [Sch], and generalized Fredholm operators [Ta, Y]. This paper is a survey of the main properties and applications of Tauberian operators.
We introduce the concept of essentially incomparable Banach spaces, and give some examples. Then, for two essentially incomparable Banach spaces X and Y, we prove that a complemented subspace of the product X x Y is isomorphic to the product of a complemented subspace of X and a complemented subspace of Y. If, additionally, X and Y are isomorphic to their respective hyperplanes, then the group of invertible operators in X x Y is not connected. The results can be applied to some classical Banach...
We give an elementary proof of the fact that given two polynomials P, Q without common zeros and a linear operator A, the operators P(A) and Q(A) verify some properties equivalent to the pair (P(A),Q(A)) being non-singular in the sense of J.L. Taylor. From these properties we derive expressions for the range and null space of P(A) and spectral mapping theorems for polynomials fo continuous (or closed) operators in Banach spaces.
Let X be a Banach space. Let 𝓐(X) be a closed ideal in the algebra ℒ(X) of the operators acting on X. We say that ℒ(X)/𝓐(X) is a Calkin algebra whenever the Fredholm operators on X coincide with the operators whose class in ℒ(X)/𝓐(X) is invertible. Among other examples, we have the cases in which 𝓐(X) is the ideal of compact, strictly singular, strictly cosingular and inessential operators, and some other ideals introduced as perturbation classes in Fredholm theory. Our aim is to present some...
We prove a basic property of continuous multilinear mappings between topological vector spaces, from which we derive an easy proof of the fact that a multilinear mapping (and a polynomial) between topological vector spaces is weakly continuous on weakly bounded sets if and only if it is weakly uniformly} continuous on weakly bounded sets. This result was obtained in 1983 by Aron, Hervés and Valdivia for polynomials between Banach spaces, and it also holds if the weak topology is replaced by a coarser...
Several operational quantities have appeared in the literature characterizing upper semi-Fredholm operators. Here we show that these quantities can be divided into three classes, in such a way that two of them are equivalent if they belong to the same class, and are comparable and not equivalent if they belong to different classes. Moreover, we give a similar classification for operational quantities characterizing lower semi-Fredholm operators.
Several concepts of incomparability of Banach spaces have been considered in the literature, which allow one to describe some of the properties of the product of two Banach spaces as a juxtaposition of the corresponding properties of the factors. In this paper we study the relations between these concepts of incomparability, survey the main results and applications, and state some open problems.
We give several characterizations of the improjective operators, introduced by Tarafdar, and we characterize the inessential operators among the improjective operators. It is an interesting problem whether both classes of operators coincide in general. A positive answer would provide, for example, an intrinsic characterization of the inessential operators. We give several equivalent formulations of this problem and we show that the inessential operators acting between certain pairs of Banach spaces...
Several operational quantities, defined in terms of the norm and the class of finite dimensional Banach spaces, have been used to characterize the classes of upper and lower semi-Fredholm operators, strictly singular and strictly cosingular operators, and to derive some perturbation results. In this paper we shall introduce and study some operational quantities derived from the norm and associated to a space ideal. By means of these quantities we construct a generalized Fredholm theory...
We obtain several characterizations for the classes of Riesz and inessential operators, and apply them to extend the family of Banach spaces for which the essential incomparability class is known, solving partially a problem posed in [6].
Let X and Y be infinite dimensional Banach spaces and let L(X,Y) be the class of all (linear continuous) operators acting between X and Y. Mil'man [5] introduced the isometry spectrum I(T) of T ∈ L(X,Y) in the following way: I(T) = {α ≥ 0: ∀ ε > 0, ∃M ∈ S∞(X), ∀x ∈ SM, | ||Tx|| - α | < ε}}, where S∞(X) is the set of all infinite dimensional closed subspaces of X and SM...
Page 1 Next