Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Closed k-stop distance in graphs

Grady BullingtonLinda ErohRalucca GeraSteven J. Winters — 2011

Discussiones Mathematicae Graph Theory

The Traveling Salesman Problem (TSP) is still one of the most researched topics in computational mathematics, and we introduce a variant of it, namely the study of the closed k-walks in graphs. We search for a shortest closed route visiting k cities in a non complete graph without weights. This motivates the following definition. Given a set of k distinct vertices = x₁, x₂, ...,xₖ in a simple graph G, the closed k-stop-distance of set is defined to be d ( ) = m i n Θ ( ) ( d ( Θ ( x ) , Θ ( x ) ) + d ( Θ ( x ) , Θ ( x ) ) + . . . + d ( Θ ( x ) , Θ ( x ) ) ) , where () is the set of all permutations from...

Bounds concerning the alliance number

Grady BullingtonLinda ErohSteven J. Winters — 2009

Mathematica Bohemica

P. Kristiansen, S. M. Hedetniemi, and S. T. Hedetniemi, in Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004), 157–177, and T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, in Global defensive alliances in graphs, Electron. J. Combin. 10 (2003), introduced the defensive alliance number a ( G ) , strong defensive alliance number a ^ ( G ) , and global defensive alliance number γ a ( G ) . In this paper, we consider relationships between these parameters and the domination number γ ( G ) . For any positive integers...

Page 1

Download Results (CSV)