In this paper we provide a direct proof of hyperbolicity for a class of one-dimensional maps on the unit interval. The maps studied are degenerate forms of the standard quadratic map on the interval. These maps are important in understanding the Newhouse theory of infinitely many sinks due to homoclinic tangencies in two dimensions.
Motivated by the study of planar homoclinic bifurcations, in this paper we describe how the intersection of two middle third Cantor sets changes as the sets are translated across each other. The resulting description shows that the intersection is never empty; in fact, the intersection can be either finite or infinite in size. We show that when the intersection is finite then the number of points in the intersection will be either 2 or 3 · 2. We also explore the Hausdorff dimension of the intersection...
Download Results (CSV)