An arithmetic analogue of Clifford's theorem.
Number fields can be viewed as analogues of curves over fields. Here we use metrized line bundles as analogues of divisors on curves. Van der Geer and Schoof gave a definition of a function on metrized line bundles that resembles properties of the dimension of , where is a divisor on a curve . In particular, they get a direct analogue of the Rieman-Roch theorem. For three theorems of curves, notably Clifford’s theorem, we will propose arithmetic analogues.
Page 1