The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Equivariant cohomology of the skyrmion bundle

Gross, Christian — 1997

Proceedings of the 16th Winter School "Geometry and Physics"

The author constructs the gauged Skyrme model by introducing the skyrmion bundle as follows: instead of considering maps U : M SU N F he thinks of the meson fields as of global sections in a bundle B ( M , SU N F , G ) = P ( M , G ) × G SU N F . For calculations within the skyrmion bundle the author introduces by means of the so-called equivariant cohomology an analogue of the topological charge and the Wess-Zumino term. The final result of this paper is the following Theorem. For the skyrmion bundle with N F 6 , one has H * ( E G × G SU N F ) H * ( SU N F ) G S ( G ̲ * ) H * ( SU N F ) H * ( B G ) H * ( SU N F ) , where E G ( B G , G ) is the universal bundle...

A generalization of the exterior product of differential forms combining Hom-valued forms

Christian Gross — 1997

Commentationes Mathematicae Universitatis Carolinae

This article deals with vector valued differential forms on C -manifolds. As a generalization of the exterior product, we introduce an operator that combines Hom ( s ( W ) , Z ) -valued forms with Hom ( s ( V ) , W ) -valued forms. We discuss the main properties of this operator such as (multi)linearity, associativity and its behavior under pullbacks, push-outs, exterior differentiation of forms, etc. Finally we present applications for Lie groups and fiber bundles.

Page 1

Download Results (CSV)