The equivalence of the definitions of the Łojasiewicz exponent introduced by Ha and by Chądzyński and Krasiński is proved. Moreover we show that if the above exponents are less than -1 then they are attained at a curve meromorphic at infinity.
Let V ⊂ ℝⁿ, n ≥ 2, be an unbounded algebraic set defined by a system of polynomial equations and let f: ℝⁿ→ ℝ be a polynomial. It is known that if f is positive on V then extends to a positive polynomial on the ambient space ℝⁿ, provided V is a variety. We give a constructive proof of this fact for an arbitrary algebraic set V. Precisely, if f is positive on V then there exists a polynomial , where are sums of squares of polynomials of degree at most p, such that f(x) + h(x) > 0 for x...
Download Results (CSV)