The search session has expired. Please query the service again.
In this paper, we study the problem of computing a minimum cost Steiner tree subject to a weight constraint in a Halin graph where each edge has a nonnegative integer cost and a nonnegative integer weight. We prove the NP-hardness of this problem and present a fully polynomial time approximation scheme for this NP-hard problem.
In this paper, we study the problem of computing a minimum cost
Steiner tree subject to a weight constraint in a Halin graph where
each edge has a nonnegative integer cost and a nonnegative integer
weight. We prove the NP-hardness of this problem and present a
fully polynomial time approximation scheme for this NP-hard problem.
Download Results (CSV)