The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let G be an additive abelian group of order k, and S be a sequence over G of length k+r, where 1 ≤ r ≤ k-1. We call the sum of k terms of S a k-sum. We show that if 0 is not a k-sum, then the number of k-sums is at least r+2 except for S containing only two distinct elements, in which case the number of k-sums equals r+1. This result improves the Bollobás-Leader theorem, which states that there are at least r+1 k-sums if 0 is not a k-sum.
Let G be an additive finite abelian group, and let S be a sequence over G. We say that S is regular if for every proper subgroup H ⊆ G, S contains at most |H|-1 terms from H. Let ₀(G) be the smallest integer t such that every regular sequence S over G of length |S| ≥ t forms an additive basis of G, i.e., every element of G can be expressed as the sum over a nonempty subsequence of S. The constant ₀(G) has been determined previously only for the elementary abelian groups. In this paper, we determine...
Download Results (CSV)