Weighted geometric mean inequalities over cones in .
We study the Hardy inequality and derive the maximal theorem of Hardy and Littlewood in the context of grand Lebesgue spaces, considered when the underlying measure space is the interval (0,1) ⊂ ℝ, and the maximal function is localized in (0,1). Moreover, we prove that the inequality holds with some c independent of f iff w belongs to the well known Muckenhoupt class , and therefore iff for some c independent of f. Some results of similar type are discussed for the case of small Lebesgue spaces....
Page 1