The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On generalized Peano and Peano derivatives

H. Fejzić — 1993

Fundamenta Mathematicae

A function F is said to have a generalized Peano derivative at x if F is continuous in a neighborhood of x and if there exists a positive integer q such that a qth primitive of F in the neighborhood has the (q+n)th Peano derivative at x; in this case the latter is called the generalized nth Peano derivative of F at x and denoted by F [ n ] ( x ) . We show that generalized Peano derivatives belong to the class [Δ’]. Also we show that they are path derivatives with a nonporous system of paths satisfying the I.I.C....

Differentiation of n-convex functions

H. FejzićR. E. SveticC. E. Weil — 2010

Fundamenta Mathematicae

The main result of this paper is that if f is n-convex on a measurable subset E of ℝ, then f is n-2 times differentiable, n-2 times Peano differentiable and the corresponding derivatives are equal, and f ( n - 1 ) = f ( n - 1 ) except on a countable set. Moreover f ( n - 1 ) is approximately differentiable with approximate derivative equal to the nth approximate Peano derivative of f almost everywhere.

Page 1

Download Results (CSV)