The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Mapping properties of integral averaging operators

H. HeinigG. Sinnamon — 1998

Studia Mathematica

Characterizations are obtained for those pairs of weight functions u and v for which the operators T f ( x ) = ʃ a ( x ) b ( x ) f ( t ) d t with a and b certain non-negative functions are bounded from L u p ( 0 , ) to L v q ( 0 , ) , 0 < p,q < ∞, p≥ 1. Sufficient conditions are given for T to be bounded on the cones of monotone functions. The results are applied to give a weighted inequality comparing differences and derivatives as well as a weight characterization for the Steklov operator.

Integral operators and weighted amalgams

C. Carton-LebrunH. HeinigS. Hofmann — 1994

Studia Mathematica

For large classes of indices, we characterize the weights u, v for which the Hardy operator is bounded from q ̅ ( L v p ̅ ) into q ( L u p ) . For more general operators of Hardy type, norm inequalities are proved which extend to weighted amalgams known estimates in weighted L p -spaces. Amalgams of the form q ( L w p ) , 1 < p,q < ∞ , q ≠ p, w A p , are also considered and sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator and local maximal operator in these spaces are obtained.

Page 1

Download Results (CSV)