The cartesian closed topological hull of the category of completely regular filterspaces
We conduct an investigation of the relationships which exist between various generalizations of complete regularity in the setting of merotopic spaces, with particular attention to filter spaces such as Cauchy spaces and convergence spaces. Our primary contribution consists in the presentation of several counterexamples establishing the divergence of various such generalizations of complete regularity. We give examples of: (1) a contigual zero space which is not weakly regular and is not a Cauchy...
We study Čech complete and strongly Čech complete topological spaces, as well as extensions of topological spaces having these properties. Since these two types of completeness are defined by means of covering properties, it is quite natural that they should have a convenient formulation in the setting of nearness spaces and that in that setting these formulations should lead to new insights and results. Our objective here is to give an internal characterization of (and to study) those nearness...
Page 1