The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let M be an open subset of a compact strongly pseudoconvex hypersurface {ρ = 0} defined by M = D × C ∩ {ρ = 0}, where 1 ≤ m ≤ n-2, D = {σ(z, ..., z) < 0} ⊂ C is strongly pseudoconvex in C. For ∂ closed (0, q) forms f on M, we prove the semi-global existence theorem for ∂ if 1 ≤ q ≤ n-m-2, or if q = n - m - 1 and f satisfies an additional “moment condition”. Most importantly, the solution operator satisfies L estimates for 1 ≤ p ≤ ∞ with p = 1 and ∞ included.
Let θ : ℳ → 𝓝 be a zero-product preserving linear map between algebras. We show that under some mild conditions θ is a product of a central element and an algebra homomorphism. Our result applies to matrix algebras, standard operator algebras, C*-algebras and W*-algebras.
Download Results (CSV)