The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

A spectral mapping theorem for Banach modules

H. Seferoğlu — 2003

Studia Mathematica

Let G be a locally compact abelian group, M(G) the convolution measure algebra, and X a Banach M(G)-module under the module multiplication μ ∘ x, μ ∈ M(G), x ∈ X. We show that if X is an essential L¹(G)-module, then σ ( T μ ) = μ ̂ ( s p ( X ) ) ¯ for each measure μ in reg(M(G)), where T μ denotes the operator in B(X) defined by T μ x = μ x , σ(·) the usual spectrum in B(X), sp(X) the hull in L¹(G) of the ideal I X = f L ¹ ( G ) | T f = 0 , μ̂ the Fourier-Stieltjes transform of μ, and reg(M(G)) the largest closed regular subalgebra of M(G); reg(M(G)) contains all...

Page 1

Download Results (CSV)