Numerical solvability of a class of Volterra-Hammerstein integral equations with noncompact kernels.
In this paper, an approach based on matrix polynomials is introduced for solving linear systems of partial differential equations. The main feature of the proposed method is the computation of the Smith canonical form of the assigned matrix polynomial to the linear system of PDEs, which leads to a reduced system. It will be shown that the reduced one is an independent system of PDEs having only one unknown in each equation. A comparison of the results for several test problems reveals that the method...
In this work, we propose the Shannon wavelets approximation for the numerical solution of a class of integro-differential equations which describe the charged particle motion for certain configurations of oscillating magnetic fields. We show that using the Galerkin method and the connection coefficients of the Shannon wavelets, the problem is transformed to an infinite algebraic system, which can be solved by fixing a finite scale of approximation. The error analysis of the method is also investigated....
Page 1