Hypersurfaces with constant scalar curvature in space forms.
We prove that there exist no stable minimal submanifolds in some n-dimensional ellipsoids, which generalizes J. Simons' result about the unit sphere and gives a partial answer to Lawson–Simons' conjecture.
We obtain inequalities between the eigenvalues of the Schrödinger operator on a compact domain Ω of a submanifold M in with boundary ∂Ω, which generalize many existing inequalities for the Laplacian on a bounded domain of a Euclidean space. We also establish similar inequalities for a closed minimal submanifold in the unit sphere, which generalize and improve Yang-Yau’s result.
Page 1