The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, following the -adic integration theory worked out by A. F. Monna and T. A. Springer [, ] and generalized by A. C. M. van Rooij and W. H. Schikhof [, ] for the spaces which are not -compacts, we study the class of integrable -adic functions with respect to Bernoulli measures of rank . Among these measures, we characterize those which are invertible and we give their inverse in the form of series.
Download Results (CSV)