Integrable functions for the Bernoulli measures of rank
In this paper, following the -adic integration theory worked out by A. F. Monna and T. A. Springer [, ] and generalized by A. C. M. van Rooij and W. H. Schikhof [, ] for the spaces which are not -compacts, we study the class of integrable -adic functions with respect to Bernoulli measures of rank . Among these measures, we characterize those which are invertible and we give their inverse in the form of series.