The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the Bishop-Phelps-Bollobás property for numerical radius (for short, BPBp-nu) of operators on ℓ₁-sums and -sums of Banach spaces. More precisely, we introduce a property of Banach spaces, which we call strongly lush. We find that if X is strongly lush and X ⊕₁ Y has the weak BPBp-nu, then (X,Y) has the Bishop-Phelps-Bollobás property (BPBp). On the other hand, if Y is strongly lush and has the weak BPBp-nu, then (X,Y) has the BPBp. Examples of strongly lush spaces are C(K) spaces, L₁(μ)...
We give sufficient and necessary conditions for complex extreme points of the unit ball of Orlicz-Lorentz spaces, as well as we find criteria for the complex rotundity and uniform complex rotundity of these spaces. As an application we show that the set of norm-attaining operators is dense in the space of bounded linear operators from into d(w,1), where is a predual of a complex Lorentz sequence space d(w,1), if and only if wi ∈ c₀∖ℓ₂.
Download Results (CSV)