In this contribution, we will use the (introduced in [1,2]) to derive a system of partial differential equations governing transport of neutrons within an interacting medium. This system forms an alternative to the well known approximation, which is based on the expansion of the directional dependence into tesseral spherical harmonics ([3,p.197]). In comparison with this latter set of equations, the Maxwell-Cartesian system posesses a much more regular structure, which may be used for various...
We present a method for solving the equations of neutron transport with discretized energetic dependence and angular dependence approximated by the diffusion theory. We are interested in the stationary solution that characterizes neutron fluxes within the nuclear reactor core in an equilibrium state. We work with the VVER-1000 type core with hexagonal fuel assembly lattice and use a nodal method for numerical solution. The method effectively combines a whole-core coarse mesh calculation with a more...
We derive the smoothed aggregation two-level method from the variational objective to minimize the final error after finishing the entire iteration. This contrasts to a standard variational two-level method, where the coarse-grid correction vector is chosen to minimize the error after coarse-grid correction procedure, which represents merely an intermediate stage of computing. Thus, we enforce the global minimization of the error. The method with smoothed prolongator is thus interpreted as a qualitatively...
Download Results (CSV)