Further results on derived sequences.
Let M be a d × d real contracting matrix. We consider the self-affine iterated function system Mv-u, Mv+u, where u is a cyclic vector. Our main result is as follows: if , then the attractor has non-empty interior. We also consider the set of points in which have a unique address. We show that unless M belongs to a very special (non-generic) class, the Hausdorff dimension of is positive. For this special class the full description of is given as well. This paper continues our work begun...
Given a monic degree polynomial and a non-negative integer , we may form a new monic degree polynomial by raising each root of to the th power. We generalize a lemma of Dobrowolski to show that if and is prime then divides the resultant of and . We then consider the function . We show that for fixed and that this function is periodic in both and , and exhibits high levels of symmetry. Some discussion of its structure as a union of lattices is also given.
Page 1