On more general Lipschitz spaces.
We study continuity envelopes of function spaces and where the weight belongs to the Muckenhoupt class ₁. This essentially extends partial forerunners in [13, 14]. We also indicate some applications of these results.
We study weighted function spaces of Lebesgue, Besov and Triebel-Lizorkin type where the weight function belongs to some Muckenhoupt class. The singularities of functions in these spaces are characterised by means of envelope functions.
We study the existence of traces of Besov spaces on fractal h-sets Γ with a special focus on assumptions necessary for this existence; in other words, we present criteria for the non-existence of traces. In that sense our paper can be regarded as an extension of Bricchi (2004) and a continuation of Caetano (2013). Closely connected with the problem of existence of traces is the notion of dichotomy in function spaces: We can prove that-depending on the function space and the set Γ-there occurs an...
We study embeddings of spaces of Besov-Morrey type, , where is a bounded domain, and obtain necessary and sufficient conditions for the continuity and compactness of . This continues our earlier studies relating to the case of . Moreover, we also characterise embeddings into the scale of spaces or into the space of bounded continuous functions.
We study continuous embeddings of Besov spaces of type , where s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞, and the weight w is doubling. This approach generalises recent results about embeddings of Muckenhoupt weighted Besov spaces. Our main argument relies on appropriate atomic decomposition techniques of such weighted spaces; here we benefit from earlier results by Bownik. In addition, we discuss some other related weight classes briefly and compare corresponding results.
Page 1