The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The above question was raised by Teodor Przymusiński in May, 1983, in an unpublished manuscript of his. Later on, it was recognized by Takao Hoshina as a question that is of fundamental importance in the theory of rectangular normality. The present paper provides a complete affirmative solution. The technique developed for the purpose allows one to answer also another question of Przymusiński's.
A subspace A of a topological space X is said to be -embedded ((point-finite)-embedded) in X if every (point-finite) partition of unity α on A with |α| ≤ γ extends to a (point-finite) partition of unity on X. The main results are: (Theorem A) A subspace A of X is (point-finite)-embedded in X iff it is -embedded and every countable intersection B of cozero-sets in X with B ∩ A = ∅ can be separated from A by a cozero-set in X. (Theorem B) The product A × [0,1] is (point-finite)-embedded in X...
For a subspace A of a space X, a linear extender φ:C(A) → C(X) is called an -extender (resp. -extender) if φ(f)[X] is included in the convex hull (resp. closed convex hull) of f[A] for each f ∈ C(A). Consider the following conditions (i)-(vii) for a closed subset A of a GO-space X: (i) A is a retract of X; (ii) A is a retract of the union of A and all clopen convex components of X; (iii) there is a continuous -extender φ:C(A × Y) → C(X × Y), with respect to both the compact-open topology and...
Download Results (CSV)