On quasinilpotent equivalence of finite rank elements in Banach algebras
We characterize elements in a semisimple Banach algebra which are quasinilpotent equivalent to maximal finite rank elements.
We characterize elements in a semisimple Banach algebra which are quasinilpotent equivalent to maximal finite rank elements.
This paper further investigates the implications of quasinilpotent equivalence for (pairs of) elements belonging to the socle of a semisimple Banach algebra. Specifically, not only does quasinilpotent equivalence of two socle elements imply spectral equality, but also the trace, determinant and spectral multiplicities of the elements must agree. It is hence shown that quasinilpotent equivalence is established by a weaker formula (than that of the spectral semidistance). More generally, in the second...
We show that the index defined via a trace for Fredholm elements in a Banach algebra has the property that an index zero Fredholm element can be decomposed as the sum of an invertible element and an element in the socle. We identify the set of index zero Fredholm elements as an upper semiregularity with the Jacobson property. The Weyl spectrum is then characterized in terms of the index.
Page 1