Zur Definition quadratischer Formen.
In this paper we study big convexity theories, that is convexity theories that are not necessarily bounded. As in the bounded case (see [4]) such a convexity theory Γ gives rise to the category ΓC of (left) Γ-convex modules. This is an equationally presentable category, and we prove that it is indeed an algebraic category over Set. We also introduce the category ΓAlg of Γ-convex algebras and show that the category Frm of frames is isomorphic to the category of associative, commutative, idempotent...
By definition a totally convex algebra is a totally convex space equipped with an associative multiplication, i.eȧ morphism of totally convex spaces. In this paper we introduce, for such algebras, the notions of ideal, tensor product, unitization, inverses, weak inverses, quasi-inverses, weak quasi-inverses and the spectrum of an element and investigate them in detail. This leads to a considerable generalization of the corresponding notions and results in the theory of Banach spaces.
Page 1