k-component disconjugacy for systems of ordinary differential equations.
We investigate the existence and multiplicity of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with nonnegative nonlinearities which can be nonsingular or singular functions, subject to multi-point boundary conditions that contain fractional derivatives.
Mathematics Subject Classification: 45G10, 45M99, 47H09 We study the solvability of a perturbed quadratic integral equation of fractional order with linear modification of the argument. This equation is considered in the Banach space of real functions which are defined, bounded and continuous on an unbounded interval. Moreover, we will obtain some asymptotic characterization of solutions. Finally, we give an example to illustrate our abstract results.
Page 1 Next