The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that the standard normalization-by-evaluation construction for the simply-typed -calculus has a natural counterpart for the untyped -calculus, with the central type-indexed logical relation replaced by a “recursively defined” invariant relation, in the style of Pitts. In fact, the construction can be seen as generalizing a computational-adequacy argument for an untyped, call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms,...
We show that the standard normalization-by-evaluation construction for the
simply-typed -calculus
has a natural counterpart for the untyped
-calculus, with the central type-indexed logical relation
replaced by a “recursively defined” , in
the style of Pitts. In fact, the construction can be seen as
generalizing a computational-adequacy argument for an untyped,
call-by-name language to normalization instead of evaluation.In the untyped setting, not all terms have normal forms, so the
normalization...
Download Results (CSV)