We consider cubic graphs formed with k ≥ 2 disjoint claws (0 ≤ i ≤ k-1) such that for every integer i modulo k the three vertices of degree 1 of are joined to the three vertices of degree 1 of and joined to the three vertices of degree 1 of . Denote by the vertex of degree 3 of and by T the set . In such a way we construct three distinct graphs, namely FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j ∈ 1,2,3) is the graph where the set of vertices induce j cycles (note that the graphs...
A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition.
In this paper we consider linear partitions of cubic simple graphs for which it is well known that la(G) = 2. A linear partition is said to be odd whenever each path of has odd length and semi-odd whenever each path of (or each path of ) has odd length.
In [2] Aldred...
Download Results (CSV)