The residual spectrum of
Resnikoff [12] proved that weights of a non trivial singular modular form should be integral multiples of 1/2, 1, 2, 4 for the Siegel, Hermitian, quaternion and exceptional cases, respectively. The θ-functions in the Siegel, Hermitian and quaternion cases provide examples of singular modular forms (Krieg [10]). Shimura [15] obtained a modular form of half-integral weight by analytically continuing an Eisenstein series. Bump and Bailey suggested the possibility of applying an analogue of Shimura's...
This paper is a continuation of []. We construct unconditionally several families of number fields with large class numbers. They are number fields whose Galois closures have as the Galois groups, dihedral groups , , and cyclic groups , . We first construct families of number fields with small regulators, and by using the strong Artin conjecture and applying some modification of zero density result of Kowalski-Michel, we choose subfamilies such that the corresponding -functions are zero free...
Page 1