The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
It is shown that the implication of an MV-algebra is determined by de Morgan negation operations on a family of quotients of the given algebra; these quotients may be taken to be totally ordered. Certain existing results on the uniqueness of an MV-algebra implication are thereby elucidated and new criteria for uniqueness derived. These rely on a characterisation of chains on which a de Morgan negation is necessarily unique.
Download Results (CSV)