The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Sufficient conditions for a two-weight norm inequality for potential type integral operators to hold are given in the case p > q > 0 and p > 1 in terms of the Hedberg-Wolff potential.
Let , i = 1,2,3, denote positive Borel measures on ℝⁿ, let denote the usual collection of dyadic cubes in ℝⁿ and let K: → [0,∞) be a map. We give a characterization of a trilinear embedding theorem, that is, of the inequality
in terms of a discrete Wolff potential and Sawyer’s checking condition, when 1 < p₁,p₂,p₃ < ∞ and 1/p₁ + 1/p₂ + 1/p₃ ≥ 1.
X. Tolsa defined a space of BMO type for positive Radon measures satisfying some growth condition on . This new BMO space is very suitable for the Calderón-Zygmund theory with non-doubling measures. Especially, the John-Nirenberg type inequality can be recovered. In the present paper we introduce a localized and weighted version of this inequality and, as applications, we obtain some vector-valued inequalities and weighted inequalities for Morrey spaces.
A weighted theory describing Morrey boundedness of fractional integral operators and fractional maximal operators is developed. A new class of weights adapted to Morrey spaces is proposed and a passage to the multilinear cases is covered.
Download Results (CSV)