Uniqueness and symmetry in problems of optimally dense packings.
We show that an aperiodic minimal tiling space with only finitely many asymptotic composants embeds in a surface if and only if it is the suspension of a symbolic interval exchange transformation (possibly with reversals). We give two necessary conditions for an aperiodic primitive substitution tiling space to embed in a surface. In the case of substitutions on two symbols our classification is nearly complete. The results characterize the codimension one hyperbolic attractors of surface diffeomorphisms...
In this paper we describe a -dimensional generalization of the Euclidean algorithm which stems from the dynamics of -interval exchange transformations. We investigate various diophantine properties of the algorithm including the quality of simultaneous approximations. We show it verifies the following Lagrange type theorem: the algorithm is eventually periodic if and only if the parameters lie in the same quadratic extension of
Page 1