On the classification of tight contact structures. I.
We determine parts of the contact homology of certain contact 3-manifolds in the framework of open book decompositions, due to Giroux.We study two cases: when the monodromy map of the compatible open book is periodic and when it is pseudo-Anosov. For an open book with periodic monodromy, we verify the Weinstein conjecture. In the case of an open book with pseudo-Anosov monodromy, suppose the boundary of a page of the open book is connected and the fractional Dehn twist coefficient equals , where...
Soit V une variété close de dimension 3. Dans cet article, on montre que les classes dhomotopie de champs de plans sur V qui contiennent des structures de contact tendues sont en nombre fini et que, si V est atoroïdale, les classes disotopie des structures de contact tendues sur V sont elles aussi en nombre fini.
Page 1