The symmetry of the Bagley–Torvik equation is investigated by using the Lie group analysis method. The Bagley–Torvik equation in the sense of the Riemann–Liouville derivatives is considered. Then we prove a Noetherlike theorem for fractional Lagrangian densities with the Riemann-Liouville fractional derivative and few examples are presented as an application of the theory.
The study of coupled system of hybrid fractional differential equations (HFDEs) needs the attention of scientists for the exploration of its different important aspects. Our aim in this paper is to study the existence and uniqueness of mild solution (EUMS) of a coupled system of HFDEs. The novelty of this work is the study of a coupled system of fractional order hybrid boundary value problems (HBVP) with n initial and boundary hybrid conditions. For this purpose, we are utilizing some classical...
In this paper, the classical Lie theory is applied to study the Benjamin-Bona-Mahony (BBM) and modified Benjamin-Bona-Mahony equations (MBBM) to obtain their symmetries, invariant solutions, symmetry reductions and differential invariants. By observation of the the adjoint representation of Mentioned symmetry groups on their Lie algebras, we find the primary classification (optimal system) of their group-invariant solutions which provides new exact solutions to BBM and MBBM equations. Finally, conservation...
Download Results (CSV)