Hajłasz-Sobolev type spaces and -energy on the Sierpinski gasket.
We introduce potential spaces on fractal metric spaces, investigate their embedding theorems, and derive various Besov spaces. Our starting point is that there exists a local, stochastically complete heat kernel satisfying a two-sided estimate on the fractal considered.
We consider post-critically finite self-similar fractals with regular harmonic structures. We first obtain effective resistance estimates in terms of the Euclidean metric, which in particular imply the embedding theorem for the domains of the Dirichlet forms associated with the harmonic structures. We then characterize the domains of the Dirichlet forms.
Page 1