The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Supercritical self-avoiding walks are space-filling

Hugo Duminil-CopinGady KozmaAriel Yadin — 2014

Annales de l'I.H.P. Probabilités et statistiques

In this article, we consider the following model of self-avoiding walk: the probability of a self-avoiding trajectory γ between two points on the boundary of a finite subdomain of d is proportional to μ - length ( γ ) . When μ is supercritical (i.e. μ l t ; μ c where μ c is the connective constant of the lattice), we show that the random trajectory becomes space-filling when taking the scaling limit.

Page 1

Download Results (CSV)