Denote by any set of cardinality continuum. It is proved that a Banach algebra A with the property that for every collection there exist α ≠ β ∈ such that is isomorphic to
,
where , and E is either for some d₀ ∈ ℕ or a 1-dimensional -bimodule with trivial right module action. In particular, ℂ is the unique non-zero prime Banach algebra satisfying the above condition.
We consider (p,q)-multi-norms and standard t-multi-norms based on Banach spaces of the form , and resolve some question about the mutual equivalence of two such multi-norms. We introduce a new multi-norm, called the [p,q]-concave multi-norm, and relate it to the standard t-multi-norm.
Download Results (CSV)