The computation of stationary distributions of Markov chains through perturbations.
This article describes an accurate procedure for computing the mean first passage times of a finite irreducible Markov chain and a Markov renewal process. The method is a refinement to the Kohlas, Zeit fur Oper Res, 30, 197–207, (1986) procedure. The technique is numerically stable in that it doesn’t involve subtractions. Algebraic expressions for the special cases of one, two, three and four states are derived.Aconsequence of the procedure is that the stationary distribution of the embedded Markov...
We present a new fundamental intuition forwhy the Kemeny feature of a Markov chain is a constant. This new perspective has interesting further implications.
Page 1