Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the heights of power digraphs modulo n

Uzma AhmadHusnine Syed — 2012

Czechoslovak Mathematical Journal

A power digraph, denoted by G ( n , k ) , is a directed graph with n = { 0 , 1 , , n - 1 } as the set of vertices and E = { ( a , b ) : a k b ( mod n ) } as the edge set. In this paper we extend the work done by Lawrence Somer and Michal Křížek: On a connection of number theory with graph theory, Czech. Math. J. 54 (2004), 465–485, and Lawrence Somer and Michal Křížek: Structure of digraphs associated with quadratic congruences with composite moduli, Discrete Math. 306 (2006), 2174–2185. The heights of the vertices and the components of G ( n , k ) for n 1 and k 2 are determined....

Characterization of power digraphs modulo n

Uzma AhmadSyed Husnine — 2011

Commentationes Mathematicae Universitatis Carolinae

A power digraph modulo n , denoted by G ( n , k ) , is a directed graph with Z n = { 0 , 1 , , n - 1 } as the set of vertices and E = { ( a , b ) : a k b ( mod n ) } as the edge set, where n and k are any positive integers. In this paper we find necessary and sufficient conditions on n and k such that the digraph G ( n , k ) has at least one isolated fixed point. We also establish necessary and sufficient conditions on n and k such that the digraph G ( n , k ) contains exactly two components. The primality of Fermat number is also discussed.

Page 1

Download Results (CSV)