The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the jump number of lexicographic sums of ordered sets

Hyung Chan JungJeh Gwon Lee — 2003

Czechoslovak Mathematical Journal

Let Q be the lexicographic sum of finite ordered sets Q x over a finite ordered set P . For some P we can give a formula for the jump number of Q in terms of the jump numbers of Q x and P , that is, s ( Q ) = s ( P ) + x P s ( Q x ) , where s ( X ) denotes the jump number of an ordered set X . We first show that w ( P ) - 1 + x P s ( Q x ) s ( Q ) s ( P ) + x P s ( Q x ) , where w ( X ) denotes the width of an ordered set X . Consequently, if P is a Dilworth ordered set, that is, s ( P ) = w ( P ) - 1 , then the formula holds. We also show that it holds again if P is bipartite. Finally, we prove that the lexicographic sum of...

Page 1

Download Results (CSV)