The and -integrals
In this paper, we define the -integral of real-valued functions defined on an interval and investigate important properties of the -integral. In particular, we show that a function is -integrable on if and only if there exists an function such that almost everywhere on . It can be seen easily that every McShane integrable function on is -integrable and every -integrable function on is Henstock integrable. In addition, we show that the -integral is equivalent to the -integral....