Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Oscillation and global attractivity in a discrete survival red blood cells model

I. KubiaczykS. H. Saker — 2003

Applicationes Mathematicae

We consider the discrete survival red blood cells model (*) N n + 1 - N = - δ N + P e - a N n - k , where δₙ and Pₙ are positive sequences. In the autonomous case we show that (*) has a unique positive steady state N*, we establish some sufficient conditions for oscillation of all positive solutions about N*, and when k = 1 we give a sufficient condition for N* to be globally asymptotically stable. In the nonatonomous case, assuming that there exists a positive solution Nₙ*, we present necessary and sufficient conditions for oscillation...

Asymptotic properties of third order functional dynamic equations on time scales

I. KubiaczykS. H. Saker — 2011

Annales Polonici Mathematici

The purpose of this paper is to study the asymptotic properties of nonoscillatory solutions of the third order nonlinear functional dynamic equation [ p ( t ) [ ( r ( t ) x Δ ( t ) ) Δ ] γ ] Δ + q ( t ) f ( x ( τ ( t ) ) ) = 0 , t ≥ t₀, on a time scale , where γ > 0 is a quotient of odd positive integers, and p, q, r and τ are positive right-dense continuous functions defined on . We classify the nonoscillatory solutions into certain classes C i , i = 0,1,2,3, according to the sign of the Δ-quasi-derivatives and obtain sufficient conditions in order that C i = . Also, we establish...

Page 1

Download Results (CSV)