On the Castelnuovo-Severi inequality.
We show that the singular holomorphic foliations induced by dominant quasi-homogeneous rational maps fill out irreducible components of the space of singular foliations of codimension and degree on the complex projective space , when . We study the geometry of these irreducible components. In particular we prove that they are all rational varieties and we compute their projective degrees in several cases.
Page 1